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Trajectory Prediction for Heterogeneous Agents:
A Performance Analysis on Small

and Imbalanced Datasets
Tiago Rodrigues de Almeida1, Yufei Zhu1, Andrey Rudenko2,

Tomasz P. Kucner3, Johannes A. Stork1, Martin Magnusson1, Achim J. Lilienthal1,4

Abstract—Robots and other intelligent systems navigating in
complex dynamic environments should predict future actions
and intentions of surrounding agents to reach their goals ef-
ficiently and avoid collisions. The dynamics of those agents
strongly depends on their tasks, roles, or observable labels.
Class-conditioned motion prediction is thus an appealing way
to reduce forecast uncertainty and get more accurate predictions
for heterogeneous agents. However, this is hardly explored in
the prior art, especially for mobile robots and in limited data
applications. In this paper, we analyse different class-conditioned
trajectory prediction methods on two datasets. We propose a
set of conditional pattern-based and efficient deep learning-
based baselines, and evaluate their performance on robotics and
outdoors datasets (THÖR-MAGNI and Stanford Drone Dataset).
Our experiments show that all methods improve accuracy in most
of the settings when considering class labels. More importantly,
we observe that there are significant differences when learning
from imbalanced datasets, or in new environments where suf-
ficient data is not available. In particular, we find that deep
learning methods perform better on balanced datasets, but in
applications with limited data, e.g., cold start of a robot in a new
environment, or imbalanced classes, pattern-based methods may
be preferable.

Index Terms—Human and Humanoid Motion Analysis and
Synthesis, Human Detection and Tracking, Datasets for Human
Motion, Deep Learning Methods

I. INTRODUCTION

RELIABLE and safe robot navigation in dynamic human-
centered environments relies on anticipating the future

behavior of other agents. In several domains, including au-
tonomous driving (AD) and industrial mobile robotics, the
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Fig. 1: Average Displacement Error of class-conditioned trajectory predic-
tion methods across balanced and imbalanced datasets. Top: In balanced
datasets, at low data regimes (10% train set ratio), the pattern-based method
(cMoD) is more accurate than deep learning methods (left). In imbalanced
datasets, cMoD is more accurate than deep generative models (right). Thus,
the pattern-based method, cMoD, is more suitable for low training data
regimes and imbalanced datasets than its deep learning counterparts. Bottom:
Class-conditioned methods (c***) consistently outperform their unconditional
counterparts across both datasets.

motion planner must proactively consider the future positions
of many heterogeneous agents to maintain safety standards [1].
In autonomous urban driving, various entities with distinct dy-
namic patterns, such as pedestrians, cyclists, and cars, navigate
in a shared space. In industrial environments, humans engaged
in different tasks, such as transporting objects, interacting with
robots, or walking in groups, may also present different motion
patterns within the same spatial layout [2]. The diversity of
agents and their corresponding motion patterns pose significant
challenges to current trajectory predictors [3], leading to high
prediction uncertainty, lower prediction accuracy, and thus to
overly conservative motion planning [4].

In the context of mobile robots in dynamic environ-
ments, prior art has hardly explored class-aware prediction
approaches, which is particularly evident given that human
motion datasets with class or activity labels are still rare [5].
Moreover, existing heterogeneous trajectory prediction meth-
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ods tailored for AD do not transfer well to robotics settings,
as they depend on domain-specific contextual features [6].
Furthermore, robotics applications present unique challenges,
such as the cold-start scenario, where a robot enters and
continuously navigates a previously unseen environment with
limited data [7]. Additionally, both robotics and AD domains
may feature non-uniform class distributions, leading to de-
creased performance of deep learning-based trajectory predic-
tion methods [8]. It is important to understand whether class-
conditioned prediction methods can benefit in applications
with scarce or imbalanced data, and if so, to what extent and
under which specific circumstances.

In this paper, we present an in-depth study of class-
conditioned trajectory prediction methods under different
conditions. We extend a pattern-based approach CLiFF-
LHMP [9], which uses Maps of Dynamics [10] (MoD),
to introduce a class-conditioned variant, and similarly adapt
several deep learning methods to include class labels. In
contrast to previous methods [11, 12, 13], our proposed deep
learning approaches are both memory and energy efficient as
they do not require training or running individual modules per
class. We assess their performance across diverse training data
conditions, considering both balanced and imbalanced datasets
(where class proportions are uniform and non-uniform, respec-
tively), and various amounts of training data. The study of
imbalanced datasets is significant as deep learning methods
may struggle to predict underrepresented classes, which is
particularly impactful when these classes represent vulnerable
road users such as pedestrians. The study of various training
data amounts reflects a practical challenge in mobile robotics,
where the system is deployed in new environments with
limited acquired data yet requiring anticipation of other agents’
movements for safe navigation. We analyse heterogeneous
agents prediction in two distinct datasets: the Stanford Drone
Dataset (SDD) [14] with diverse road users outdoors, and the
THÖR-MAGNI dataset [5], with mobile robots and human
agents in a mockup indoor industrial environment. Through
this comparative study, we aim to show the preferred methods
for specific settings, quantifying their performance in different
data regimes and class-imbalanced datasets. Fig. 1 outlines the
main results of our study.

In summary, we make the following contributions:

• We establish a set of conditional Maps of Dynamics
(MoD) and deep learning-based trajectory prediction
baselines1 for outdoor mixed traffic scenarios (SDD) and
an indoor mobile robot dataset (THÖR-MAGNI).

• We analyse the performance of four deep learning meth-
ods and an MoD approach that consider activity labels or
agent classes in THÖR-MAGNI and SDD.

• We show that class-conditioned methods outperform their
unconditional counterparts in most cases. In addition,
we show that MoD approaches are preferable over the
deep generative methods for class-imbalanced datasets
and superior to single-output deep learning methods in
low data regimes.

1Code available at https://github.com/tmralmeida/class-cond-trajpred

II. RELATED WORK

A. Motion Prediction for Heterogeneous Agents

The task of heterogeneous trajectory prediction involves
estimating the future positions of an agent based on an
observed trajectory, augmented by features describing the
agent class, and optionally incorporating additional contextual
factors, such as the obstacle maps. Deep learning has been
widely applied to solve this problem [6, 15, 12], in partic-
ular Graph Neural Networks in the context of Autonomous
Driving [11, 16, 17, 15, 13]. However, methods developed
for predicting the motion of road agents do not transfer their
assumptions when applied to other environments, such as
intralogistic or public spaces. For instance, TraPhic [6] uses
the shape of the road agent as a discriminative input feature
for the various classes, which does not scale well to datasets
with diverse human activities, such as THÖR [18] or THÖR-
MAGNI [5]. Conversely, HAICU [19] uses the output of the
perception module as a representation of the road agent’s
class, incorporating a continuous label distribution instead of
a discrete value as the agent’s type. Finally, [20] explores the
use of dynamic Occupancy Grid Maps (OGMs) combined with
semantic attributes to predict vehicle trajectories. However,
it does not account for the heterogeneous entities typically
present in road environments (e.g., pedestrians and cyclists).
This limitation highlights the need for models that can be
applied to different road users.

Alternative approaches involve individual deep learning
modules for each agent class [11, 13, 12] to account for the
heterogeneity of the dataset. These methods require individ-
ual encoders and/or decoders for each class, which presents
scalability challenges as the number of classes increases.
Conversely, in this paper we condition deep learning-based
trajectory predictors on class embeddings, leading to a single
model encompassing all classes. Semantics-STGCNN [17] ad-
dresses imbalanced class proportions in heterogeneous motion
trajectory datasets through a class-balancing loss function,
yet this strategy struggles to achieve top performance in
all classes. To address issues of deep learning methods in
imbalanced datasets, we propose a class-conditioned method
based on Maps of Dynamics that is significantly less sensitive
to class proportions than deep learning approaches and thus
improves on its unconditional counterpart.

In this paper, we conduct an analysis of class-conditioned
methods that are agnostic to the scene environment, allowing
for applicability across different settings. Specifically, we
evaluate four deep learning models and a Maps of Dynamics
method [9], along with their respective conditional counter-
parts, on two datasets of human motion (THÖR-MAGNI) and
road agent trajectories (SDD). We argue these methods are
well-suited for application in new environments to support safe
mobile robot navigation.

B. Heterogeneous Motion Trajectory Datasets

Motion trajectory datasets reflect a variety of factors that
describe the dynamics of the agents’ movements. These factors
commonly relate to (1) agent-agent interactions [21, 22],
providing insights into the social and interactive motion;
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(2) agent-environment interactions [23], describing specific
environment-related events in trajectory data or activities per-
formed by the agent; (3) human-robot interaction (HRI) [24]
supporting the development of social navigation methods.
This paper focuses on trajectory prediction in heterogeneous
motion datasets containing various classes of agents. These
classes include labeled agents such as cars, pedestrians, and
bicyclists[14], or diverse human activities that influence the
motion dynamics in a working environment [5].

Heterogeneous human motion datasets have been gathered
across diverse environments, including road scenes [25, 26],
university campuses [14, 27, 28], surveilled outdoor areas [29,
30], and indoor settings [18, 5, 23]. In this paper, we tested
our prediction methods on two datasets: the well-established
outdoor SDD [14] and the novel indoor THÖR-MAGNI
dataset [5]. We chose SDD and THÖR-MAGNI due to their
distinct settings: imbalanced outdoor road agents and balanced
human tasks in a robotics environment, respectively.

III. METHODS

A. Problem Statement

We frame the task of trajectory prediction as inferring a
sequence of future states T with the input of an observation
sequence X , and the class of the agent c. A state s ∈ X
of an agent is represented by the 2D Cartesian coordinates
(x, y) and the corresponding velocity vector (vx, vy), i.e.,
s = (x, y, vx, vy). Velocity can also be decomposed into 2D
speed and orientation. The future sequence T can be composed
of velocities Y and positions P , depending on the method
formulation. After observing Op time steps, Tp future states
are predicted, i.e. Op = |X| and Tp = |T |.

B. Deep Learning Models

In this section, we present the deep learning methods to
predict motion trajectories considering agent classes. Our
analysis includes both single-output trajectory predictors (one
prediction per observed trajectory), namely Long Short-Term
Memory (LSTM), specifically the RED method [31], and
Transformer-based, denoted by TF [2], as well as multiple-
output approaches (multiple predictions per observed trajec-
tory), including Generative Adversarial Networks (GANs) and
Variational Autoencoders (VAEs). We use the single-output
methods, RED and TF, and their respective class-conditioned
counterparts cRED and cTF, as outlined in [2]. The multiple-
output approaches, GAN, VAE, and their respective condi-
tioned counterparts cGAN and cVAE use Transformers-based
encoders [32] (as described in this section).

1) Single-Output Trajectory Predictors: The first step is
embedding X using a Multi-Layer Perceptron (MLP) network
(see Fig. 2). Additionally, cRED and cTF embed the integer
class label c with an embedding layer. Subsequently, for RED
and cRED, the embedded input vector passes through an
LSTM layer, while for TF and cTF, the encoded input vector
undergoes a Transformer-based encoder. An MLP-based de-
coder then generates the predicted sequence of velocity vectors
from the encoded vectors. For conditional variants (cRED and
cTF), class embeddings are concatenated with the temporal
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Ŷ

Fig. 2: Single-output unconditional and conditional methods (dashed lines).
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Fig. 3: GAN-based models: unconditional GAN (left) and cGAN (right).

features before decoding. We train single-output networks with
the Mean Squared Error (MSE) loss:

LT (P, P̂ ) =
1

Tp

Tp∑
j

∥pj − p̂j∥2, (1)

where P̂ represents the estimated sequence of positions, pj the
ground truth position at time step j and p̂j the corresponding
predicted position.

2) GAN-based Trajectory Predictors: A GAN aims to
reconstruct the generative process of the underlying input data
using two modules: the generator (G) and the discriminator
(D). The generator maps the input X and a latent random
vector zG to a realistic future set of velocities Y . We sample
the latent vector from a standard normal Gaussian distribution.
Simultaneously, the discriminator differentiates both real and
generated future velocity vectors, Y and Ŷ , respectively. This
adversarial training scenario is essential for producing mul-
tiple plausible trajectories. In cGAN, both the generator and
discriminator incorporate the trajectory class as an additional
input. We optimize the GAN and cGAN discriminators using
the binary cross-entropy loss, while the GAN generator is
optimized with a weighted sum given by:

LG = λ1LT + λ2

(
1

2
E[(D(Y )− 1)2] +

1

2
E[D(Ŷ )2]

)
, (2)

where λ1 and λ2 are the weights applied to the MSE term LT

(Eq. 1) and to the GAN loss, respectively. For the conditional
variant (cGAN), the class is additionally fed as input to both
the generator and the discriminator.

Fig. 3 illustrates the network configurations for GAN and
cGAN models. In general, the generators have the same layer
configuration as the TF model. The difference is the latent
vector, zG, which is concatenated with the temporal features
from the transformer and passed to the decoder. Analogous
to [22], the discriminator comprises a transformer-encoder
network and a MLP in the last layer. For cGAN, both the
generator and the discriminator concatenate X to the agent’s
class embedding. The generator also concatenates the class
embeddings to the input of the decoder.
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ẑV

⊕

X⊕ c
qϕpθ

Embed.
MLP

Encoder
Transformer

Decoder
MLP

Ŷ

Y ⊕ c

Embed.
MLP

Encoder
Transformer

Output
Linear

ẑV
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Fig. 4: VAE-based models: unconditional VAE (left) and cVAE (right). The
recognition network (qϕ, enclosed with dashed border) is solely available
during training.

3) VAE-based Trajectory Predictors: Generative VAE-
based predictors consist of two main networks: the prior
network pθ and the recognition network qϕ. The prior network
maps the input state X and a latent vector zV to the predicted
trajectory Y , while the recognition network learns to map the
ground truth trajectory Y to the parameters of a Gaussian
distribution, representing a lower-dimensional latent space.
We adopt a standard normal Gaussian as the prior for the
distribution of future trajectories. The Kullback-Leibler (KL)
divergence is used to align the learned distribution to the prior,
contributing to the VAE’s loss function:

LV = β1 LT − β2 DKL[qϕ(zV |Y )∥pθ(zV |X)], (3)

where β1 and β2 are the weights applied to the MSE and KL
terms, respectively. For the conditional variant (cVAE), the
agent’s class is added as input to both pθ and qϕ.

Fig. 4 shows the network configurations for the VAE
and cVAE models. The predictor’s network configuration is
identical to the generator in the GAN and cGAN models.
The difference lies in the training process, where the latent
vector zV is sampled based on parameters generated by the
recognition network (qϕ). The recognition network processes
the ground truth prediction akin to pθ but concludes with two
linear layers producing the Gaussian parameters.

C. Pattern-based Trajectory Predictors

Maps of Dynamics encode spatial or spatio-temporal motion
patterns as a feature of the environment [33, 10]. By generaliz-
ing velocity observations, human dynamics can be represented
through flow models. Prior work proposes CLiFF-LHMP [9],
which exploits MoDs for long-term human motion prediction.
It uses a multi-modal probabilistic representation of a veloc-
ity field (CLiFF-map), which is built from observations of
human motion, and employs Semi-Wrapped Gaussian mixture
models (SWGMM) to capture local velocity distributions. This
method implicitly accounts for obstacle layouts and predicts
trajectories that follow the environment’s complex topology.
CLiFF-LHMP excels in predicting up to 50 s ahead, [9], even
with sparse, incomplete, and very limited training data [34].

In [9], a single CLiFF-map is used for all predicted
trajectories, irrespective of the agent class. However, their
motion patterns often differ, as shown in Fig. 5 and further
detailed in Fig. 6. To address this, we introduce a class-
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Fig. 5: General and class-conditioned CLiFF-maps in the DeathCircle scene
of the SDD dataset. Left: all classes combined, middle:: Bicyclist class, right:
Pedestrian class. Colored arrows depict the mean speed (length) and direction
(orientation) within the SWGMM of CLiFF-map, highlighting distinct motion
patterns for different classes.
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Fig. 6: CLiFF-maps at example locations in SDD [14]. Both general and
class-conditioned CLiFF-maps of Bicyclist and Pedestrian of three locations
are shown on the right. General CLiFF maps may depict combinations of
multiple classes (point 1) or median speed and orientation (points 2 and 3).

conditioned CLiFF-map that differentiates the motion patterns
representation to specific agent classes.

In a class-conditioned CLiFF-map, individual CLiFF-maps
Ξc are built for each agent class using their specific trajecto-
ries. For agent class c, we estimate T by sampling a velocity
from Ξc within the sampling radius rs for each prediction time
step t. This velocity is then refined using a biased version
of the Constant Velocity Model (CVM), following the same
estimation process as the original CLiFF-LHMP, which is
briefly described in the following. We refer the reader to
[9] for more details. The velocity prediction at time step t
is updated by biasing the last time step velocity with the
sampled one as ρt = ρt−1+(ρs−ρt−1) ·Kn(ρs−ρt−1), θt =
θt−1 + (θs − θt−1) ·Kn(θs − θt−1), where ρ and θ represent
speed and heading orientation of the agent, respectively. The
kernel function Kn, defined as Kn(x) = e−β∥x∥2

, modulates
the influence of the sampled velocity. Using kernel Kn, the
MoD term is scaled by the deviation between sampled and
current velocities according to the CVM. The MoD is trusted
less if it deviates more from the current velocity. Parameter
β controls the reliance on the MoD versus the CVM, with a
lower β favoring the velocity sampled from the MoD.

IV. EXPERIMENTS

A. Datasets

In this study, we evaluate and compare the performance
of the trajectory prediction methods described in Sec. III on
two datasets, THÖR-MAGNI [5] and SDD [14]. Importantly
for our analysis, there is a substantial difference in class pro-
portions between the two datasets. Specifically, SDD shows a
noticeable class imbalance compared to THÖR-MAGNI. This
inter-dataset class imbalance poses a significant challenge to
accurate trajectory prediction. We analyze how this challenge
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Fig. 7: MSE training curves examples for the deep learning models, where
(c) denotes conditional variants and Val the validation curve.

is handled by the two categories of predictors: deep learning
models and MoDs approaches.

THÖR-MAGNI includes 3.5 hours of human motion data
in a laboratory setting with static and mobile robots. In some
scenarios, people are assigned tasks such as moving objects
(boxes, buckets, poster stands) which significantly influence
their motion patterns, especially the velocity profiles [2]. This
paper focuses on Scenarios 2, 3A, and 3B, which include 30
participants in 1.5 hours of motion. Five distinct agent roles are
recorded in these scenarios: Carrier–Large Object, Visitors–
Group, Visitors–Alone, Carrier–Bucket, and Carrier–Box, with
corresponding sample proportions of 25.7%, 23.6%, 22.7%,
14.1%, and 13.9%.

SDD encompasses 5 hours of heterogeneous trajectory data
from 60 videos recorded on the Stanford University campus. It
includes trajectories of bicyclists, pedestrians, skateboarders,
carts, cars, and buses. Notably, certain classes such as Bicyclist
and Pedestrian coexist in shared spaces but exhibit distinct
movement patterns (e.g. bicyclists typically move faster). The
dataset provides agent coordinates in pixel values. For our
evaluation, we choose videos that contain at least two classes
of agents and have above 10 trajectories per class, resulting
in 7 scenes with cumulatively 3 agent classes: Pedestrian,
Bicyclist and Car with corresponding sample proportions of
64.6%, 34.3%, and 1.1%.

B. Implementation Details

To evaluate the predictors, we employed a repeated random
sub-sampling validation method. For each iteration, we ran-
domly selected p% of the dataset for training and used the
remaining (100− p)% for testing. This process was repeated
ten times, with the selection of test and training data being
independently randomized in each iteration. In the accuracy
analysis (Sec. V-A), we set p = 90. In the data efficiency
analysis (Sec. V-B), we decreased the percentage of data used
for training from p = 90 to p = 10 in steps of 10. Following
current trajectory prediction benchmarks [35], we set Op = 8
and Tp = 12.

For deep learning-based predictors: We maintained a
uniform hyperparameter setting to ensure a fair comparison.
The training process for all networks extended to a maximum
of 100 epochs with early stopping after 20 epochs with
no improvement. We optimize the networks with the Adam
optimizer [36], a learning rate of 1e−3, and a batch size of
32. We also reduce the learning rate on the plateau of the
validation loss during training (patience set to 5 epochs).

For training generative models, including GAN, cGAN,
VAE, and cVAE, we have standardized the weights in their
respective loss functions. Consequently, λ1 = β1 = 2 and

λ2 = β2 = 1, indicating a preference for the reconstruction of
predictions based on the MSE term in the loss functions.

These hyperparameters and the networks’ configurations
described in Sec. III-B allow training without overfitting, as
shown by the loss curve examples in Fig. 7. Finally, each
model receives as input state the position concatenated with
the velocity vector for THÖR-MAGNI scenarios. In contrast,
for SDD, the velocity vector alone is used as input due to
the aggregation of diverse scenes, making the position an
irrelevant input feature.

For MoD-based predictors: Identical parameters are used
for both the class-conditioned and the general CLiFF-LHMP.
The CLiFF-map grid resolutions for the SDD dataset and the
THÖR-MAGNI dataset are 20 pixels and 0.2m, respectively.
The sampling radius rs is adjusted for each dataset to match
the CLiFF map grid resolution. The kernel parameter is set
to 5 for all experiments. In the figures and tables presenting
the results, CLiFF-LHMP is denoted as MoD and class-
conditioned CLiFF-LHMP is denoted as cMoD.

C. Evaluation Metrics

To compare the trajectory predictors, we use the Top-K
Average and Final Displacement Errors (Top-K ADE and
FDE, in pixels for SDD and meters for THÖR-MAGNI), as
in [16, 22]. Top-K ADE measures the average ℓ2 distance
between the ground truth track and the closest prediction (out
of K samples), and FDE measures the distance between the
last predicted position and the corresponding ground truth.
We present the results of Top-1 and Top-3 ADE/FDE. When
K = 1, we use the most likely output trajectory. We measure
the mean and standard deviation of these metrics across
iterations in the validation.

V. RESULTS

In our analysis, we aim to (1) quantify the improvement in
trajectory prediction performance when using class attributes,
and (2) evaluate trajectory prediction performance based on
the specific characteristics of the dataset. The latter provides
insight into the appropriate trajectory prediction method se-
lection for a particular application. Due to space limitations,
we only report the results for THÖR-MAGNI Scenario 2 in
Table I, Fig. 9 and Fig. 12, and for Scenarios 3A and 3B in
Fig. 10. We observe similar trends in all scenarios.

A. Accuracy Analysis Conditioned on Class Balance

Table I shows the prediction accuracy results separately for
each class on Scenario 2 of the THÖR-MAGNI and SDD
datasets. It also shows the global results for all trajectories
(last rows for each dataset). A broad view of the THÖR-
MAGNI results shows that conditional methods outperform
their unconditional counterparts regardless of the type of
method (deep learning and MoD). When predicting trajectories
from the Visitors–Group, this difference is least pronounced.
We speculate that this may be due to the fact that the motion
patterns of these agents are less structured compared to the
other classes, as shown in Fig. 9. This also highlights the
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TABLE I: Top-1 ADE/FDE scores (ADE above, FDE below) in THÖR-MAGNI Scenario 2 and SDD datasets with a 90% train ratio. Bold values highlight
superior performance of conditional models over their unconditional counterparts across most settings.

Data Class RED cRED TF cTF GAN cGAN VAE cVAE MoD cMoD

T
H

Ö
R

-M
A

G
N

I
Sc

en
ar

io
2

Carrier-
Box

0.64±0.07
1.23±0.14

0.60±0.07
1.10±0.14

0.66±0.07
1.24±0.15

0.60±0.07
1.10±0.13

0.76±0.07
1.50±0.19

0.70±0.10
1.33±0.19

0.68±0.06
1.31±0.13

0.66±0.05
1.26±0.11

0.81±0.11
1.59±0.25

0.73±0.07
1.40±0.17

Carrier-
Bucket

0.71±0.06
1.35±0.18

0.67±0.06
1.21±0.15

0.65±0.05
1.24±0.13

0.60±0.06
1.12±0.16

0.78±0.04
1.48±0.18

0.73±0.06
1.37±0.14

0.73±0.09
1.44±0.20

0.74±0.08
1.43±0.19

0.92±0.18
1.78±0.37

0.72±0.10
1.30±0.17

Visitors-
Alone

0.81±0.05
1.53±0.12

0.78±0.06
1.48±0.13

0.79±0.04
1.52±0.12

0.75±0.04
1.45±0.14

0.88±0.07
1.72±0.14

0.85±0.08
1.67±0.19

0.84±0.06
1.62±0.16

0.83±0.05
1.61±0.14

0.94±0.06
1.97±0.20

0.92±0.09
1.95±0.22

Visitors-
Group

0.72±0.05
1.34±0.17

0.72±0.07
1.35±0.18

0.74±0.06
1.40±0.15

0.68±0.05
1.29±0.13

0.80±0.08
1.52±0.15

0.80±0.06
1.57±0.16

0.78±0.08
1.59±0.16
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Fig. 8: Prediction examples of Byciclist (left), Pedestrian (middle) and Car (right) in SDD with 4.8 s prediction horizon.
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Fig. 9: Comparison of motion patterns of Carrier–Box and Visitors–Group in
THÖR-MAGNI, Scenario 2. Class-conditioned CLiFF-maps (first row) show
that Carrier–Box has a more distinct and structured motion pattern compared
to Visitors–Group. The KL divergence heatmap (middle row) quantifies
the difference between the class-conditioned CLiFF-map and the general
one. Visitors–Group shows less divergence from the general motion patterns
and lower motion intensity (bottom row), resulting in a less pronounced
improvement in prediction accuracy from using class labels.

importance of suitable class labels, such that each class encom-
passes specific motion patterns, and dataset-imposed classes
may not always do so. For the imbalanced dataset (SDD), deep
learning methods face the challenge of identifying a represen-
tative number of different motion patterns across classes. This
difficulty is most pronounced in single-output deep learning
methods (RED and TF). In contrast, cMoD is less sensitive to

class proportions and is able to use class information for more
accurate predictions. In summary, we highlight two key points:
(1) the superiority of deep learning methods over MoD-based
approaches in balanced datasets like THÖR-MAGNI, and (2)
the appropriateness of conditional MoD over deep generative
methods (cGAN, cVAE) for imbalanced datasets like SDD.

In the MoD-aware predictor, cMoD outperforms general
MoD in both datasets. The THÖR-MAGNI dataset highlights
differences in spatial patterns among classes, as shown in
Fig. 9. Prediction accuracy improvements were more pro-
nounced in classes with distinct motion patterns, such as
Carrier–Box and Carrier–Bucket, which deviate more from
the general motion pattern. In SDD, variances in speed are
observed among different classes, as depicted in Fig. 5. A sin-
gle CLiFF-map struggles to accurately model variations across
multiple classes, leading to inaccurate predictions compared to
the class-conditioned MoD-aware method.

B. Data Efficiency Analysis

To assess how training data volume affects model perfor-
mance, we conducted a data efficiency analysis aimed at iden-
tifying optimal models for various data settings. Fig. 10 shows
the performance of single-output methods (RED, TF, and
MoD, along with their conditioned variants) in THÖR-MAGNI
Scenarios 3A and 3B. cMoD outperforms deep learning meth-
ods in Top-1 ADE in low data regimes, where 10% of data
is available during training. Moreover, performance for deep
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Fig. 10: Top-1 ADE/FDE scores in THÖR-MAGNI Scenario 3A (top row)
and 3B (bottom row). In this class-balanced setting, deep learning methods
surpass MoD approaches. However, MoD methods (MoD and cMoD) maintain
stability even with reduced training data.

learning methods declines with less training data, whereas
MoD approaches (MoD and cMoD) are more stable across
different data regimes. The MoD model we employ, CLiFF-
map, efficiently captures major human motion patterns with
limited training data. Beyond a 30% training data increase,
improvements in CLiFF-map are less notable, especially com-
pared to the training set expansion from 10% to 20%. Once
major motion patterns are captured, the representations stabi-
lize, and unlike deep learning methods, MoD approaches do
not show significant performance improvements. This stability
highlights the MoD approach’s advantage in scenarios where
extensive data collection is impractical. Fig. 11 presents the
performance of multiple-output methods (VAE, GAN, and
MoD, along with their respective conditioned variants) on both
datasets. In THÖR-MAGNI, deep generative methods prove
more effective in generating one out of K trajectories com-
pared to MoD-based methods. Conversely, in the imbalanced
dataset SDD, MoD-based methods consistently outperform
deep generative methods across all train set ratios. These
results underscore the preference for MoD-based methods for
multiple outputs in imbalanced datasets.

C. Qualitative Results
We provide qualitative Top-1 trajectory prediction com-

parisons for each multiple-output approach in Fig. 8 and
for each single-output method in Fig. 12 for the SDD and
THÖR-MAGNI datasets, respectively. For both datasets, con-
ditioned methods are more accurate than their unconditional
counterparts. On the SDD dataset, which is characterized by
imbalanced classes, cMoD is the most effective compared to
deep learning methods. On the THÖR-MAGNI dataset, we
observed that conditioned deep learning methods outperform
both unconditional deep learning methods and the MoD ap-
proaches, which is consistent with the quantitative results.

D. Limitations
In this work we analyze the effect of the dataset-imposed

classes on motion prediction accuracy and compare deep
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Fig. 11: Top-3 ADE/FDE scores across THÖR-MAGNI Scenarios 2, 3A, 3B
(top to third rows), and SDD (bottom row). In the class-balanced THÖR-
MAGNI, deep generative methods excel over MoD. In the imbalanced SDD,
MoD methods outperform deep generative methods across all data regimes.
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Fig. 12: Prediction examples of Carrier–Box (top left), Carrier–Bucket (top
right), Visitors–Alone (bottom left) and Carrier–Large Object (bottom right)
in THÖR-MAGNI with 4.8 s prediction horizon.

learning with pattern-based methods across various data set-
tings. However, our methods do not explicitly consider agent
interactions, due to the own complexity of evaluating and
comparing the interaction models [37]. We aim to address this
challenge in the future work.

VI. CONCLUSIONS & FUTURE WORK

The challenge of making accurate trajectory predictions
in dynamic environments is further complicated when fac-
ing heterogeneous agents with diverse dynamics and distinct
motion patterns. Considering the classes of agents can help
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lowering uncertainty in motion forecasts, an issue that arises
when attempting to generalize across different classes. In
this paper, we analyze how prior art in deep learning-based
and pattern-based prediction can be adapted to consider class
labels, concluding that class-conditioned methods generally
outperform their unconditioned counterparts. The choice of
a specific method, on the other hand, strongly depends on
the available training data and the intended downstream ap-
plication: in new environments with limited data, or where
some classes are underrepresented and require multimodal
predictions (sometimes critically so, e.g., vulnerable road users
in automated driving), pattern-based methods may have an
edge over the deep learning models. In future work, we plan
to explore unsupervised trajectory and dynamics clustering
to create more natural and informative class definitions. This
approach aims to address the limitations of dataset-imposed
classes (i.e., unstructured motion patterns within a class) and
improve model performance in handling class imbalances.
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